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The singularities near the crack tips of homogeneous materials are monotone of
typer® andr®log’ r (depending on the boundary conditions along nonsmooth do-
mains). However, the singularities around the interfacial cracks of the heterogeneous
bimaterials are oscillatory of type sin(e logr). The method of auxiliary mapping
(MAM), introduced by Babgka and Oh, was proven to be successful in dealing with
r* type singularities. However, the effectiveness of MAM is reduced in handling
oscillating singularities. This paper deals with oscillating singularities as well as the
monotone singularities by extending MAM through introducing the power auxiliary
mapping and the exponential auxiliary mappinge 2001 Academic Press
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1. INTRODUCTION

This paper studies an effective new method that yields highly accurate finite elem
solutions for elliptic boundary value problems containing the singularities of types
r“log’r, or r*sin(e logr), where O< « < 1. These singularities are usually caused by
either the nonsmoothness of data (such as jump boundary conditions or singular load:
the nonsmoothness of the solution domain (such as corners or cracks) [10, 19].
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The accuracy of the finite element solution depends on the regularity of the true solutio
the problem concerned. In the presence of singularities, the true solution has a low regul;
and hence it is difficult for FEM to yield an accurate economical solution. In theory al
practice of FEM, considerable effort has been made to design special approaches de
with elliptic boundary value problems containing singularities. In the case of nonsmoothn
of the solution domains, the following approaches are the most typical: mesh refinen
[1, 6, 11], use of special elements [2, 15, 24], use of the enriched (nonlocal) basis functi
[12, 22].

Babwka and Oh [5, 17, 18] introduced a new method, the method of auxiliary mappi
(MAM), which can effectively handle the® type singularities [14]. This paper takes this
method, MAM, and makes several extensions. One such extension introduces the e
nential auxiliary mapping to effectively deal wittt log’ r-type andr sin(e logr)-type
singularities. The essence of this method involves locally transforming a neighborhc
Qs of each singularity point to a new domafls by using mappings such as= ¢#
(the power auxiliary mapping) arm= e®£+#27 (the exponential auxiliary mapping). Here
zZ=X+1y,¢ =& +in, Bisdirectly determined by the known nature of the singularity ir
such a way which locally transforms the exact (singular) solution to a smoother functi
This can be easily approximated in the new mapped domain by the conventional us
the p-version of the FEM. In practice, the mapping sjzés recommended to be slightly
larger than o for the power auxiliary mapping. For example, consider a crack singula
ity of the formr¥/2f (r, 9) located at the origin, wheré is smooth. Then the auxiliary
mappingy (2) = z%/4 maps the upper half plane into one half of the first quadrant, and
point (f, 6) in the lower half of the first quadrant evaluates(®g f ((F)*, 49), a smooth
function.

To further understand the effect of the power auxiliary mappitig) = z/4, let Qs =
{(r,0) ;1 < Ry, 0<6 <m/4). Then,Qs = ¥ (Qg) = {(F,H) : f < RY*,0<6 < 7/16}.

If we consider the basis function pfdegree 12 oveRs, the singular functions created over
Qs through the power auxiliary mapping restricted to the posihaxis are generated by
{1, x¥4 x¥2 x3/4 x, x54 . x4 x3}. Thatis, the auxiliary mapping implicitly creates
special singular basis functions which mimic the singularity. However, unlike other singu
function approaches, the method introduced in this paper does not require constructir
using singular basis functions in actual computations.

This paper is organized as follows: Section 2 develops the new method, MAM, by int
ducing two auxiliary mappings: the power auxiliary mapping and the exponential auxilic
mapping. Section 3 tests this method with respect to singular functions that contain vari
types of singularities. For a clearer presentation of the method, proofs of lemmas, use
theory development and numerical experiments, can be found in the Appendix.

For brevity, the theory and numerical results are presented with respect to elliptic bounc
value problems. However, the method is applicable to elasticity problems for their fin
element analysis (see [16, 18]).

2. THE METHOD OF AUXILIARY MAPPING TO DEAL WITH SINGULARITIES

In this section, by introducing the exponential auxiliary mapping and the power auxilic
mapping, MAM is modified and extended so that it may handle the oscillating singulariti
as well as the monotone singularities.
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2.1. A Model Problem

In this paper§2 is a simply connected open subset of the plRAsuch that its closure
is @ nonsmooth domain which contains domain singularities (such as corners and cra
The coordinates of the points {2 will be denoted by(x1, Xo) as well agx, y). Letv be a

function defined o2 and define
2 v\ ? n av\?
v hid i
aX ay

2 2 . 2
||v||o,g=/v de; ||v||m=/
Q Q

Then, the Hilbert spaces defined B)(Q2) = {v: ||[v]lo.q < o0}, HY(RQ) = {v:[[v]1q <
oo}, are called Sobolev spaces.
Consider a two-dimensional elliptic boundary value problem

de.

2
ad au .
S a(awg) =1 ne W
i,j=1
u=0 onaJ, (2)
wheref € HO(Q). LetH}(R) = {u € HY(Q) : u = 0 on dQ}. Thenthe variational equa-

tion corresponding to the model problem (1)—(2) is as follows: Find an elemerti} ()
which satisfies

B(u,v) = F(v), foranyv e H}(Q), (3)
where
B(u,v) = /Q (Vxo)[aj](Vxw) " de2, 4)
Fv) = /Q fuds. (5)
Here

a 0 a 0
VX = Ay au = PR M
<8X1 8Xz) <3X 8y)
In the following,U (v) = %B(u, v) is called the strain energy of and||v|g = VU (v) iS

called the energy norm af. By the exact solution of the problem (1)—(2), we mean the
unique (weak) solutioney of the variational equation (3).

2.2. The Power and the Exponential Auxiliary Mappings

In this section, we consider two auxiliary mappings which can effectively handle tt
monotone singularities of the type

re orr%(logr)®, (6)
and the oscillating singularities of the type

recogelogr), (7)
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where O< o < 1, and(r, 6) are the polar coordinates of the points inxdg plane. Here is
called theoscillating factor. It is known that, near a crack front, the displacement function
of homogeneous isotropic materials have the singularities of type (6) [9]. However,
near interfacial cracks of heterogeneous bimaterials, the displacement functions have
oscillating singularities of type (7) [1, 20, 21].

Letz=x+1y and¢ = & + in be complex numbers on theplane and the -plane,
respectively. By using the conformal mappirgs: ¢# andz = exp(8¢) from the¢-plane
onto thez-plane, we define two auxiliary mappings which transform a dorgajnin the
&-n plane onto a neighborhod@s of a singularity (especially, the crack tip) in tkey
plane as follows:

Phow (& 1) = (1) cosp, (7)” sinph), (®)
and

8™ (€, m) = (& cospan, & sinpan), ©

where(f, 6) denotes the polar coordinates®f ). The former is called the power auxiliary
mapping (PAM) and the later is called the exponential auxiliary mapping (EAM). Bere
will be called the mapping size of the auxiliary mappings. We assumesthat for the
power auxiliary mapping angy andg, can be any positive real numbers for the exponentia
auxiliary mapping. For brevity, the mapping size vediy, 8,) for EAM will sometimes
be denoted by.

Let Qg be the transformed domain 6fs by either PAM or EAM. That isQ2s denotes
either(wgw)‘l(ﬂs) or (ngp)‘l(Qs). Thens are as shown in Fig. 1 (by PAM) and Fig. 7
(by EAM), respectively.
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FIG.1. Scheme of Neighborhoo@s of crack tip and the Mapped Neighborhofd by the power auxiliary
mapping<pgow whenpg = 2. The ternt should be less thary3/2 so thai2s can be inside the unit disk.
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In what follows, the transformation of a function: Qs— R by the auxiliary mapping
@b OF 9, is denoted byl. That is, 0 is eitheru o ¢, oruo gf,

Note that, if a mapping sizg of PAM is 1/a, then i“come] o<pp0w =fcosh,
[r*(logr)®] o <pp0w =T (Blogf)?, and [*cogelogr)] o <pp0w = cogsBlogf). On the
other hand, if a mapping sizg:. ) of EAM is (1, 1), then [ cosaf] o ol =&
cosan), [r*(logr)’] o p&uf? = €& (£ /a)’, and [ * cose logr)] o gl = € cogeé /a).
Hence, we have the following:

1. By these auxiliary mappings, the intensities of the singularities can be greatly redu
to yield accurate and economical finite element solutions in the framework pftleesion
of FEM [7, 8, 23]. In other words, the transformed functidh®y PAM as well as the
transformed functions by EAM, become much smoother than before. Therefore, the pq
nomial interpolations for these transformed smooth functions definéekare improved
compared to the polynomial interpolations of the original singular functions defin@g.on
PAM is able to remove the power singularity, but the log-singularity and the oscillation st
exist. EAM is able to remove the power singularity as well as the log singularity, but t
mapped domaifs is infinite (Fig. 7).

2. If ¢(&, 1) is a polynomial onQ2s, theng o (¢ho,) " is & singular function of2s,
which resembles the corresponding singularity.

3. Furthermore, by the inequality (A.9) and (A.14) in Appendix Il, we have the followin
inequality:

[Uex = & © (©ho) " Il1.00 < Blldex — dll1 o (10)
Huex —¢o (‘pgxp) _1H1,QS < BllUex — dll1agw (11)

Here|| - ||, a. w is the weighted norm defined in Appendix Il. Sintg becomes a smooth
function, it has a good approximation property. For exampl@eifo, = O(r'/4), then
there is a polynomiap € Pp(fzs) (the set of polynomials ofes of degree< p) such that
[[Uex © (ngw — PllLas < Cp 2 by the arguments with respect to the weighted Besov spac
([4]). Hence, by the inequality (10),

Huex —¢o (‘Pgow)_lﬂl,szs <4C/ pz,

wherepisthe degree of basis polynomials. Formal error estimates may be pursued elsew
by taking advantage of the inequalities (10) and (11), and applying those argumentsin [4

2.3. The Construction of the Finite Element Spaces by Using PAM and EAM

Let QY be the standard triangular element in they, plane with verticesv," =
(-1, 0), Vz(t) (1,0), ViV = (0, v/3) and2} be the standard quadrilateral element in the
&-n; plane with verticed/? = (-1, —1), VZ(Q) L -1, V4% = (1,1, V,? = (-1 2.

2.3.1. The construction of singular elemental mapping thrup@ﬂ (Fig. 1). Inorder
to generate a conforming finite element space, special parameterizations for the outer |
curved sides are constructed as follows: for examplehdgp : [—1, 1] — S(Q?‘) C Q be
the standard linear mapping, whe‘ﬁé” = 21 — 22 is the third side of the quadrilateral
elementQ = 13— 12 —» 21 — 22 in Qg of Fig. 1. Then, in what follows, the param-
eterization of the curved Sldﬁg) (<pp0w) 1(Sg)) of the curved quadrilateral element
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Q" = (9ho)"HQ) in Qs, is defined by

(€&, 1(5) = [(#hen) "o h] (&) (12)

Let W be a blending type elemental mapping fre}’ onto a curved guadrilateral element
Q* obtained by using the parameterization (12) for the curved é@eand the standard
parameterization for the circular curve side},,) (13— 12) (see Chapter 6 of [23]).
Then the a Singular Elemental Mapping fr ¥ onto Q is defined by

WS EL 1) = [@how © Y] E M)

Then for a standard shape functigron Qé‘?), ¢ o (\IJS)‘1 is a singular shape function on

Q, which resembles &#-type singular function. The singular elemental mappings fron
Q¥ to curved triangular elements with one curved sid&inare constructed in a similar
manner.

Now for the eight triangular elements with one curved side and 16 quadrilateral eleme
with two curved sides, we construct singular elemental mappings as follows=fdr £ 8,

US = Phow © Vi 1 QY — Tk = ¢h0, (T (13)
and for 9< k < 24,
e = gho, oW Q) — Q= 0k, (QP). (14)

Let us note that by the particular construction of the parameterization ‘(@)Et, 1) =
Vo (&, 1) islinearing, whereWq is the conventional elemental mapping fr@ﬁ) ontoQ.

Hence, the singular elemental mappitgs, . . ., W5, agree with the conventional elemental
mappingslys, . .., W3o along the common sides betwe®i; andEzs, Q153 andEyg, and so

on.HereEs, . . ., Exzare elements iR\ Q2swhich share one straight side with quadrilateral
element7, ..., Qu4, respectively (see Fig. 1). Thus, the finite element space construct

through these elemental mappings‘éxactly conforming” [23]. In other words, each
member of the finite element space constructed below is continuous in order to ensure ¢
approximation properties.

2.3.2. The construction of singular elemental mapping throp@p(Fig. 7). The singu-
lar elemental mappingg? through the exponential auxiliary mappi(z@(pare constructed
in Appendix IlI.

2.3.3. Construction of Finite Element Spac&uppose A = {Ex:k=1,2,...,
N(A)} represents a specific mesh @rsuch that the neighborhooéix; ¢ 2 of the singu-
larities are partitioned as shown in either Fig. 1 or Fig. 7. A&be the vector of elemental
mappings assigned to the elementaiby the following rule:

1. Assign the conventional elemental mappings to the elemefit§ay;
2. Assign the singular elemental mappings defined by 13 and 14 to the elem@x{s in

Supposely represents either the standard triangular element or the standard quadr
eral element an®,(Q2%}) is the space of polynomials of degrpadefined onQS;. Then
the finite element space, denoted B2, A, M), is the set of all functiona defined on
Q such that
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1. The strain energy af is finite,
2. uo WS e Pp(QY)if k <8anduo Ws e Py)if9 <k <24
3. Uo Wy € Py(2S}) for the elements iR\ 2.

Now, the finite element solutiou ¢ is the projection of the exact solution ors8(£2, A,
M). The dimension of the vector spaB&(2, A, M) is called the Number of Degree of
Freedom.

In the p-version of the finite element method [3, 7, 8, 23], to obtain the desired accura
the mesh ofthe domainis fixed and only the degngef the basis polynomialsisincreased.

Additional work may be required to construct the singular basis functions of the fini
element spac&P (2, A, M), (which were constructed through PAM or EAM), for the
computations of the local stiffness matrices and local load vectors. The novelty of tl
method is this additional work may be avoided by the following:

e Instead of constructing the singular basis functionsSBfQ2, A, M) for the local
stiffness matrices and the local load vectors for the elements (denotégdulich stands
for either a triangular elemerii or a quadrilateral elemer@y) in Qs, we use either the
transformed bilinear forn$8*(-, -) and the transformed linear function&l(-), defined in
Lemma Al.2 or3(-, -) and F(-), defined in Lemma Al.1.

In other words, for the local stiffness matrices and local load vectors of the eleme
Ex C Qs, we use the conventional FEM to compute local stiffness matrices and local lo
vectors of the corresponding mapped elemé@itin Qs (if PAM is used) ancEy in Qs (if
EAM is used), respectively.

Thus, the proposed method requires virtually no more extra work than the conventio
FEM. In other words, the only extra work involved for this method is that in order to calcula
the local stiffness matrices and the local load vectors of elemerfes;ithe transformed
bilinear form (eithe#3*(-, -) or B(-, -)), and the transformed linear functional (eitlfet(-)
orﬁ(-)) will be used, instead of the original bilinear form and the original linear functiona
Let us note the original bilinear form and the linear functional are the left side integre
in Appendix I. Of course, the bilinear form for the local stiffness matrices and the line
functional for local load vectors of those elementxQ2s are, respectively, the original
bilinear formB(., -) and the original linear functiongf(-).

3. NUMERICAL RESULTS

This section demonstrates the effectiveness of the power auxiliary mapping as wel
the exponential auxiliary mapping in dealing with singularities.

For a clear presentation of the effectiveness of mapping techniques, we consider
Poisson equation,

—Au=f on Q={r,0):r <rg, 0<6 <},

(see Fig. 2) for which the exact solution is one of the following hypothetical singul
functions:

1. uy(r,0) = (r® +0.05r%) cosd,

2. uy(r,8) =r%(logr)?cosh (orr%5(logr)?cosh),
3. us(r, 8) =r%5(sin(0.1- logr)) coss,

4. uy(r, 6) =r9%5(sin(3logr)) cosp.
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FIG. 2. Scheme of the domain of the test problems and various geometric mesh refinements with respe
the ratiog.

In all of the numerical examples of this section, traction boundary conditions are impo:s
along the boundary, and the origin is fixed. Tiraistribution for thep-version of FEM is
restricted to be uniform (that is, in the construction of elemental shape functions, the de
of the basis polynomials of the master element takes the yafoeall elements).

It is known (18, 23) thafiuse — Uex||2 = |U(Use) — U(Uey)|, provided that all boundary
conditions are either homogeneous Dirichlet or arbitrary traction boundary conditions
this section, by the Relative Error (%) in Energy Norm, we mean

_ 1/2
100- Pu(uex) u(ufe)|:| .

15

U (Uex) (13)

First, suppose an asymptotic expansion of the solution of an elliptic equation at a sin
larity point (caused by the irregularity of a solution domain) has the form ([22])

N
u(r, ) =Y fa(0) + v(r, ), (16)

n=1

wherev € H?(Q), which is the collection of all measurable functiansuch thatfﬂ[v2 +
Vov-Vu+ (%)2 + (;fg’y)z + (%)2] dxdy < oco. In most practical problems of fracture
mechanics, the smoother term&ave little influence on the solution at the points close tc
the singularity point. Thus, in this papéhe assumption is that the coefficients of highel
order terms of the asymptotic expansion of solutions at singularity points are zero (that

v = 0in (16)).
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However, if the coefficients of some higher order terms are not negligible, then care m
be exercised in applying this method. For example suppasmtains a term of the form
cmf 12 fm(6) andcy is large, thengur 1°f,(6)] o ¢y, = cm(r)“ofm(e) cannot have good
approximation properties on the mapped singular regigrin case the diameter &ts is
>1, unless the degree of basis polynomials are very large. However, if a neighbdelkood
of a singularity point is chosen to be small, for examle= Q2 N {(r, 8) :r < 0.15}, then
we haveQ2s c {(f, 6) :f < 0.63}, on which(f)*® is almost zero.

The first example demonstrates the justification of the forgoing arguments.

ExampLE 3.1. r* type singular function plus higher order terms. We assume that t
domain for this case is the upper half unit d@k= {(r,0):0 <6 < =m,r < 1}. Then, the
strain energy is

1
Uy = 5/ Vu; - Vu; = 1.036832676
Q

and—Au; = 0.15(cost) (5r2 — 8r13/2)/r7/2,

If we select8 = 4 for the mapping size of the power auxiliary mapping, and the neighbo
hood of the singularity point i§zs {(r,0):r <0.15 0 < 6 <}, then on the mapped
domain$s, the first termf 2 cos 4), of the mapped solutloul =Ujo (ppow, is the dominat-
ing term and the high-order second tern@r)?° cos 4, of (4, is almost zero. Therefore,
the additional high-order term does not deter for MAM to yield a highly accurate finil
element solution as shown in Fig. 3. The geometric rqtie 0.15 is used for the mesh for
the finite element analysis in Fig. 3.

—
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FIG. 3. The relative errors (%) in Energy Norm when the solution,ig, 6) = (%% + 0.05r %) cosp, which
contains the * type singularity. “Pow Map” indicates the results obtained by the power auxiliary mamﬁj,pg
with 8 = 4.
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In Fig. 3, the relative errors of FE solutions obtained by the power auxiliary mappil
(PAM) with mapping size 4 and those obtained without using the mapping techniqu
respectively, are 0038% and B2%, whenp-degree is 8 and the discretization®fis a
coarse mesh of 12 elements (which is Mesh 2 of Fig. 2) when the radii arg, 0.15.

For the numerical results in Fig. s = {(r,0):0 < 6 < =, r < 0.5}is used for a neigh-
borhood of the singularity and hence the regular regiofRgis= {(r,0):05 < 6 < 1}.
However, the corresponding results obtained by selecting a smaller neighbdelced
{(r,0):]r] < 0.15} N © of the singularity are similar to those in Fig. 3.

Because of the nature of PAM, in dealing withtype singularity, MAM does not need a
massive mesh refinement. Rather, the results obtained by applying MAM on the 12-elen
mesh are almost the same as those obtained by applying MAM on the 20-element n
(which is Mesh 4 of Fig. 2 when the radii are5, 0.15, 0.15%, 0.15%). For example,
when thep-degree is 8, the relative errors ar@@38% for the 12-element coarse mesh anc
0.00249% for the geometric refined mesh of 20 elements.

Furthermore, the results in Fig. 3 demonstrate MAM superiority over the conventiot
p-version of FEM in dealing with® type monotone singularity.

For theh- p version of FEM, the diagram of the geometric meshes are listed in Fig. 2
follows:

a: Mesh 1 represents the basic mesh by two co-centered circles of giadivith no
layers around the singularity point.

b: Mesh 2 represents the geometrically refined mesh obtained by placing one laye
radiusrq.

¢: Mesh 3 and Mesh 4 are the geometrically refined meshes by placing two layers
radiusrq, rq?, and by placing three layers of radi, rg?, rq3, respectively.

d: Similarly, Mesh 8 is the geometrically refined mesh by placing seven layers of ra
raq,rg2rgd,rg4 rq® rq® rq’.

Theh-p version of FEM is the combination of refining mesh and increasing degree of ba
functions as follows: Mesh 1 anp-degree= 1, Mesh 2 andp-degree= 2, Mesh 3 and
p-degree= 3, Mesh 4 anchb-degree= 4, and so on.

In the second example, to demonstrate the effectiveness of MAM in dealing with 1
log® r -type singularity, MAM is compared with the-p method.

ExaMPLE 3.2. r®log’ r-type singular function. The domain for this case is the uppe
half disk (Fig. 2) where the radius of the outer circle is 2. Then the strain enengy-of
r%2Slog?r cost is

1
Uy = 5/ Vuz - Vuz = 6163010106
Q

and—Au, = 0.0625cost) (15 log’r — 16 logr — 32)/r /4.

In this exampleQ2s = {(r,0):r <1,0< 6 < x} is used for the neighborhood of the
singularity point. In dealing with this type of singularity,

1. If PAM cpg(,w is used, thenu, o <pgow = 167 log? f cosf, which becomes smoother
thanu,. However, the log-singularity is still there.



752 OH, KIM, AND LEE

. If EAM ¢ is used, theru; o o)) = 16e°£2 cosn, which becomes a smooth

functlon on the infinite strig—oo, 0] x [—7, 7] on the&-n plane.

Now the results obtained by MAM with respect to PAM and EAM are compared wit
the results obtained by thie-p method with mesh refinement by the geometric ratic
q = 0.15 and theh-p method with mesh refinement by the geometric rgtie e 5 in
Table I.

InTable I, “POW 8 = 4)" represents the results obtained by applying MAM with respec
to PAM of the mapping size 4 on Mesh 5 obtained by the rgtie (0.15)*. “EXP (8 =
(4,1))" represents the results obtained by applying MAM with respect to EAM of th
mapping size(4, 1) on Mesh 5 obtained by the rat@p= e~2". From this example, the
following facts are observed:

1. Table | demonstrates that EAM with mapping size (4, 1) yields the best econon
FE solutions among the three methods:hhp method, PAM, and EAM. Since, for EAM,
Mesh 5 is constructed by the ratip= e 2", under the mappingg;7’, the mapped mesh
on s = (—o0, 0] x [—7, 7] becomes a uniform mesh such thatoo, 0] is divided into
(—00,—8r/4],[-87 /4, —61 /4], [—6n/4, —4r /4], [-4x /4, —27 /4], and [-2r/4, 0]
(Fig. 7).

On the other hand, the mapped true solutiprby PAM g0p0w does not havé“-type
singularity. Howeverfl, still has Iogfr -type singularity. To handle the remaining sin-

gularity, log?f, the mapped domaifs is geometrically refined by the ratip = 0.15.

TABLE |
The Relative Error (%) in Energy Norm When u, = r®?%log®r cos@ Is the
True Solution and Whenu, = %5 log? r cos# Is the True Solution

Theh-p Method with ratioq The Mapping Method with map siz¢

p-deg DOF q=015 q=el% DOF POW@=4) EXP{@=(41)

r°?(log’r) cosd

1 11 99.96 99.96 31 25.27 24.37

2 43 97.65 87.43 85 5.817 5.560
3 97 87.67 53.38 143 2.742 1.782
4 189 73.08 28.06 225 1.160 0.549
5 331 57.80 15.93 331 0.563 0.313
6 535 44.05 11.91 461 0.431 0.149
7 813 32.65 10.88 615 0.396 0.103
8 1177 23.70 793 0.382 0.028

Jr(log?r) cosd

1 11 98.38 31 25.14 45.49

2 43 78.33 42.85 85 5.235 9.025
3 97 44,16 14.39 143 1.445 6.977
4 189 21.80 10.82 225 0.517 1.869
5 331 10.09 9.96 331 0.236 0.538
6 535 4.50 9.40 461 0.130 0.148
7 813 1.95 9.00 615 0.078 0.033
8 1177 793 0.050 0.005
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For this purposeQs is refined by the ratiq = 0.15*. Then the mapped mesh on the
mapped domainQs becomes a geometrically refined mesh by the ratie=
0.15

2. For the geometric mesh refinement of the conventigmeérsion of FEM, the ra-
tio q = e 5 yields better results than the ratep= 0.15 which is an optimal geo-
metric ratio to deal with the&“-type monotone singularity [23]. Actually, of the ratios
q=015qg=¢e",q=e1", q=e?%,theratioq = e 2% yields the best results. How-
ever, as we can see on the bottom half of Table |, method with respect to mesh
refinement byg = 0.15 converges faster than ttep method with respect to mesh re-
finement byq = e 15" when the intensity of singularity is the same as the crac
singularity.

3. The results of Table | are depicted in Fig. 4 on the log-log scale. Fig. 4 shows tl
MAM (with PAM or EAM) yields better results than the p method with either geometric
ratioq = e 1% orq = 0.15. If g = e > is used for the geometric mesh for the conven-
tional p-version of FEM, the results by Mesh 7 are not better than the results by Mesl
because® is already too small. Thush®p with q = e 257" on Table | stopped when the
p-degree reached seven. In most practical computations bly-thenethod, the refining
mesh usually stops at Mesh 6.

Let us note that in dealing with® log’ r type singularity, EAM performs better than
PAM. The above mesh refinement for EAM may not be optimal. An optimal mesh for EA|
is under investigation.

Inthe next two examples, we consider a function which contains the oscillating singulal
of typer® sin(e logr) with respect to various sizesof oscillating factor.
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FIG. 4. The relative errors (%) in Energy Norm when the solutioniigr, 6) = r°%(log?r) cosf, which
contains the* log’ r type singularity. “H-P &g = 0.15 " and “H-P &q = e %" stand for the results obtained
by theh-p method with respect to the ratigs= 0.15 andq = e %7, respectively.
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ExampLE 3.3. Weakly oscillating singular functions with small oscillating factor
(¢ <0.17). The domain for this example is the upper half disk (Fig. 2) with radius Z
The strain energy is

1
U3z) = > / Vuz - Vuz = 0.03174559397
Q

and—Au; = 0.15(cost)(5r2 — 8r1¥2) /r7/?,

By PAM <pp0w, the oscillating singular function is transformed 9 =uzo <pp0w =
f2sin(0.4 logf) cosd on Qs which contains no moré®-type singularity, but has a small
oscillating factor. Thus, it is not necessary to refine the mapped dofaifor a large
improvement. That is, MAM vyields improved results at low cost (small DOF). However,
the oscillating factor were > 1, then(s could have been highly oscillating (see, Exam-
ple 3.4). In Table Il, “Meb 2 & Map=4,” and “Mes 4 & Map = 4,” respectively, indicate
the results obtained by MAM with mapping size 4 on Mesh 2 (the geometrically refine
mesh of Mesh 1 obtained by putting one layer) and by MAM with mapping size 4 on Me
4 (the mesh obtained by putting three layers in Mesh 1). Here the ratio for mesh refinen
is g = 0.15. On the other hand,"Més2 & No Map” indicates the results obtained by the
conventionalp-method without using mapping techniques.

From this example, we have the following conclusions:

1. Unlike the results in Example 3.2, the geometric ratie:- 0.15 for the p-version
of FEM yields the best results among the four ratips: 0.15,q = e, q = e %, and
q=e?

2. The numerical results in Table Il are depicted in Fig. 5, which demonstrates MA
With respect to PAM yields better results than the conventipratrsion of FEM.

. Ifthe oscillating factor were = 3 (Example 3.4), the oscillating factor of the mapped
functlon by<ppw is 12, which means the mapped function is highly oscillating on thi
mapped domaii2s. Thus, MAM alone cannot yield much improved results. However, i
the oscillating factor < 0.17, the mapped true solutidn by<pp0w is stillweakly oscillating
and hence the MAM with respect to PAM could yield the much improved results as sho
in Table II.

TABLE Il
The Relative Errors (%) in Energy Norm When the True Solution
Is uz = r%sin(0.1 - logr) cos@

p-deg DOF MebB2&NoMap Mesh2&Map=4 DOF Mesh2&NoMap Mesh2 & Map=4

1 21 28.83 25.133 26 20.80 24.005

2 57 16.42 4.6964 71 0.717 2.3628
3 97 12.17 1.4780 120 4.183 1.2987
4 153 9.761 0.2361 189 2.709 0.1465
5 225 8.185 0.0668 278 1.942 0.0133
6 313 7.049 0.0275 387 1.500 0.0034
7 417 6.181 0.0139 516 1.217 0.0015
8 537 5.487 0.0086 665 1.021 0.0010
9 673 4913 0.0063 834 0.877 0.0016




NUMERICAL METHODS 755

—
o
T

—
=)

Y
[=]
=)
UNLBLRRALL |

G
UNLBLRRRRL |

—&— Mesh 2 & No Map
—— Mesh2 & Map=4
—&A—— Mesh 4 & No Map

—0— Mesh4 & Map=4

Relative Error in Energy Norm (%)
o
T LI IIIN

—
(=]
[}
maRa |

i | ] | R |
10 10° 10°
Degree of Freedom

-
(=]
T €
(=]
of

FIG. 5. The relative errors (%) in Energy Norm when the solutionujér, #) = r°®sin(0.1 - logr) cos9,
which contains an oscillating singularity.

As the oscillating factor becomes smaller, the singularity function is less oscillatir
As one can see from Fig. 5, MAM gives highly accurate solutions at low cost when t
oscillating factore is small. In most practical problems of fracture mechanids,small.
Actually, itis known [16] that the maximum value of the oscillating factors for the interfacic
cracks of bimaterials is = 0.17.

Finally, we consider a problem which contains a highly oscillating singularity.

ExampLE 3.4. Highly oscillating singular functions with large oscillating factoe{ 1).
The domain for this example is the upper half disk of radius 2 in Fig. 2, and the neighborh
of the singularity point i2s = {(r,0):0 < 6 < &, r < 1}. Then the strain energy is

1
U(ug) = E/ Vus - Vuy = 7.270858618
Q

and—Auy = 0.75(cost)(—13sin3 logr) + 4 cog3logr))/r¥?2.

By PAM ¢y, Us is transformed tdly = F2sin(12- logf) cos) which has a large
oscillating factor § = 12). Thus,{, still has poor approximation properties even thougt
the singularity of type“ disappeared.

In order to make the oscillating factor as small as possible while maintaining a gc
mapping effect in dealing with the¥-singularity, we use PAM with mapping size= 2.

In this paper, the local stiffness matrices and local load vectors are computed by
Gaussian quadrature formula of ¥212 gauss points for every level pfdegree. However,
because of the large oscillating facter= 6), the errors of the numerical integrals of
the local load vectolfs |J((p,2)0w)|(—AU4) o (gof)Ow)q;den are not small, wheneveE is a
triangular element containing this singularity point. Thus, MAM is not able to give a larg
improvement.
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TABLE 11l
The Relative Errors (%) in Energy Norm When the True Solution
Is us = r®sin(3- logr) cosd

p-deg DOF h-p&q=0.15 DOF Mesh8&NoMap Mesh8& Map=2

1 11 88.22 45 88.05 88.35
2 42 45.80 126 42.96 54.54
3 96 39.51 211 38.81 29.00
4 188 18.68 332 18.52 7.41
5 330 5.67 489 5.61 5.11
6 534 2.08 682 2.07 1.41
7 812 1.54 911 1.53 0.24
8 1176 0.96 1176 0.96 0.09

From this example, we have observed the following facts:

1. The numerical results in Table Il are depicted in Fig. 6, which demonstrates MA
with respect to PAM vyields better results than the method with respect to mesh refine-
ment byq = 0.15.

2. The mapped function is highly oscillating on the mapped dorfjsince the oscil-
lating factor of the mapped function bg%w is 6. Thus, MAM alone cannot yield much
improved results. If larger numbers of Gauss points, in computations of the local load v
tors for the elements containing the singular point, were used, MAM on Mesh 8 could he
yielded more accurate solutions.
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FIG. 6. The relative errors (%) in Energy Norm when the solution,ig, ) = r°°sin(3 - logr) cosd, which
contains highly oscillating singularity (= 3).
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3. MAM with respectto EAM yields as good results as those in Table Ill. However, mut
improved results are expected by employing EAM whenever the treatments for infir
elements are selected in an optimal manner.

4. CONCLUDING REMARKS

EAM is more advantageous than PAM when the intensitin the re, r*log’r, r®
sin(e logr) types of singularity is not known in advance. However, its drawback is th
the mapped neighborhodds of a singularity point becomes an infinite strip, and hence
infinite elements should be introduced. In this paper, a preliminary report on EAM is pl
sented. Extensive research on EAM (including shape functions for infinite elements, opti
meshes on the infinite strip, and so on) should be done. Since EAM yields the best econ
ical FE solutions for the problems containirfglog’ r -type singularity, EAM is promising
in dealing with oscillating singularities.

Ther“-singularity and the log-term of the oscillating singularity of the typein(e logr)
can be destroyed by EAM{LP). However, if g1 > 1, then the sine function is more
oscillating. Thus, the shape functions on the singular re§igrgenerated by the infinite
elements and EAM (described in Appendix Ill) may not be optimal in dealing with th
oscillating singularity.

For the problems containing the singularity of typé€sor r¢ sin(e logr) with small
e(«k1), PAM is very effective. Thus, for such cases, introduction of EAM is not necessa

The numerical tests demonstrate MAM with respectto EAM as well as MAM with respe
to PAM yield better economical FE solutions for the problems containing singularities th
the h-p version of FEM and the conventionglversion of FEM whenever intensity of
singularity and type of singularity is known in advance.

Finally, let us comment on the applications and the 3D extensions of the mapping m
ods. The methods developed in this paper were applied to composite materials [16] to ol
highly accurate energy release rates for delamination cracks in laminated plates. Ther
three different types of 3D singularities: the vertex, the edge and the vertex-edge comb
singularities [20, 21]. At the tip of a crack in heterogeneous materials, these singulari
are oscillating. The methods of this paper can easily be extended so that it can handls
oscillating edge singularities arising in composite materials. However, the behavior of
oscillating vertex-edge singularities is different from the 2D counterpart. Preliminary wo
for 3D extension of PAM for monotone singularities can be found in [13].

APPENDIX |

The Transformed Principal of Virtual Work by the Auxiliary Mappings

The determinants of the Jacobian matrices of the power auxiliary mapﬁj,ggand the
exponential auxiliary mapping{,> are

|3 (@paw)| = B2EFPTD and |3 (¢h,p)| = BB, (A1)
respectively.
Let Vi = (L. %) andV; = (j—‘E d"—n) In what follows, we will obtain the transformed

bilinear forms and the transformed linear functionals corresponding to the two auxilic
mappings.
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LEMMA AL1. Letu v € HY(Qs), then by the exponential auxiliary mappim@lﬁ,ﬁz),
the bilinear form(4) and the linear functiona|5), are transformed to the forms

B, v) = / (VyU) [a“ alz] (Vxv)T dx dy
Qs a1 ax

=[ (véa){gi gz](v&a)ngdnEB(a, ?), (A.2)

Qs

where

Ci1 = %[aﬂ co€ (B2n) + (g1 + a12) COSBan) SIN(Ban) + a2 SIP(Ban)],
C12 = (p2 — @11) SIN(B21) COSB2n) — 81 SINF(B2n) + @12 COS(B2n),
Co1 = (ap2 — @11) SIN(B21) COSBon) + 81 COS(Bon) — @12 SINF(B21),

Cp = %[311 sir(B2n) — (a12 + @1) SiN(B2n) COS(Ban) + 822 COS(Ban)].

Forv e HY(Qg) and f € HY(Qs), we have
F) = f(x, y)v(x, y)dxdy
Qs

= | BB (5, m)i(E, n) dedn = F(D). (A3)

Qs

Proof. Since, for the mapping siz& = (81, 82), the inverse of the Jacobian matrix of
the exponential auxiliary mapping is

1 {,32005,32'7» _,Blsin,BZ’?] (A4)

J ,B -1 =
[ (‘Pexp)] B1B2€%% | BosinBon, B1COSPan

B(u, v) Z/s‘z "]<¢g><p)‘([‘] (‘pSXp)]_l(VEG)T)T [311 Sz ([‘J(‘pgxp)]_l(véf))T) dé dn

1 ax

- / vga{cll Clz}(vga)ngdnzé(a, ). m (A.5)
3 Co1 C22

By using a similar argument, we can prove the following lemma:

LEMMA AL2. Letu v € HY(Qs), then by the power auxiliary mapping,,. the bi-
linear form (4) and the linear functionaf5), are transformed to the following forms

B, v) = / (VU [a“
Qs

a1 T
a1 azz} (Vyxv)' dx dy

= / (V:0) {q“ q”’] (V)T de dn = B*(0, D), (A.6)
O21 Q22

Qs
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where

t=(1-p)0

011 = a11 COS t + ap Sirft — (ap1 + a1) sint cost
02 = (A11 — @) SiNt cost — ay; Si't + azpcost
Op1 = (@11 — @) Sint cost — ag> Sif t + a1 cot

Op2 = @11 SIMP t + @y COF t + (a12 + 1) Sint cost.

Forv e HY(Qg) and f € HY(Qsg), we have
f(v)s/ f(x, y)v(x, y)dxdy
Qs

= | BPE2+ PP e, n dEdy = FF (D).

Qs

APPENDIX Il

The Inequality for the Error Estimate

(PAM) Suppose the diameter of the neighborhd@d of the singularity point is
<1. Then, by (A1), we have m&ﬂ(wﬁw)l < B? on Qs. Hence, we obtain the follow-
ing inequalities:

Ul o = / u?dx dy= / |3(¢hon)| - 1012dedn < B20G 4. (A7)
Qs Qs
By applying (A.5) with the identity matrix in place of the coefficient matiy ], we obtain
ulg o, = / (Vyu) - (Vxu) T dx dy= / (VeQ) - (V:O)T dédp = |0|i§25. (A.8)
Qs Qs

Since||ul|2 = |[u||3 + |ul3, the equalities (A.7) and (A.8) imply the following inequality.

LEMMA All.1. Foru e HY(Qsg), we have

IullLes = B0 aq- (A.9)

(EAM) Let us define a weighted Sobolev norm with respect to a weight function vec
W = (Wy, Wy) as follows:

00 e = [ Welol? + WAV V). (A.10)

The expressiom 1(Q2; W) = {v: |v]lLo.w < oo} is called a weighted Sobolev space with
weight vectoW = (Wp, W)).
We have the following equation:

||u||§,95=/9 |u|2dxdy=/§ 13(¢y)| - 1012 dy

— Bis /Q &4 (&, )2 dé dn. (A11)
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By applying (A.1) with identity matrix in place of the coefficient matrg[, we have

ulLes = [ (Vxw) - (Vxu)" dx dy
Qs
. [A B .
= /@S(Vsu)- [B c} - (Vs 0)" dé dn, (A.12)

where
A= £2cog Bon + B sir’ Bon,

B = 0.5sin282n) - (B2/B1 — B1/B2),
C= % Sir? Bon + £ cog Bon.

Let M = max{%, %, |% - %|}, then by using the inequality:ad < (a2 + b?), one can
easily show that (A.11) is bounded by

ulf g, < 2M /Q (Vel) - (V)T =2M[01% 4 . (A.13)

Thus, the inequalities (A.10) and (A.13) imply the inequality (A.14) of the following lemme

LEMMA All.2. Foru € HY(Qgs; W = (%4, 1)), if we let K= maxy/BiBa, </2B1/Pa,
282/}, then

ullnes = KOl gqw- (A.14)

If (81, B2) = (1, 1) for the mapping size of the EAMve have K= 8. Moreover since
B1 > 0and0 < B, < 1lin practice K is actually./281/B-.

APPENDIX I

The Singular Elemental Mapping Constructed through EAM

Without loss of generality, we will work with the case where the mapping size |
B1= B =1andQs = {(r,0) : r < 1}. Theinfinite triangular elements 6fsin Fig. 7 are
denoted byi® =2 — 3— 1,..., Tg° = 10— 2 — 1, and the quadrilateral elements of
QsinFig. 7 are denoted by =3 — 2 —> 11— 12, ..., Qy = 11— 19— 28— 20.

Let (X1, Y1) = (0,0), (X5, Y2), (X3, Y3), ..., (X37, Y37) are the coordinates of the nodes
1,2,3,...,37 of the mesh of2s in Fig. 7, respectively. The coordinates of the corre-
sponding points ir2s are denoted byXy., Vi) = [¢3, ] 1(Xk. Y. k=1,2,..., 37, re-
spectively.

(I1.1) The elemental mappings fro@%; onto the infinite triangular elements 6fs;

By using a similar method to that in [25], the elemental mappi@@from the reference
triangular elemen®; — {(0, v/3)} onto the infinite triangular elemefit® is constructed
as the composition of the following two mappings. Thaﬁigo,(gt, ) = (Hy o Ho) (&, my),
whereHo: Q% — {(0, v/3)} — @ is defined by

V3 2y 1)

HO(EI’ Ut) = <\/§ . ) \/§
— I
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FIG. 7. Scheme of Neighborhoofts of crack tip and the Mapped Neighborhoéx by the exponential
auxiliary mappingpgxpwhen the map size vector 5= (1, 1).

andH; : Q¥ — T2 is defined by

o 1 o o 1-&. 148
HiG, n) = (l_n;t(xz-f- X1 + 1 m(xz — X11), thYz-i- thY3>~

The elemental mappings fro@y — {(0, +/3)} onto all other infinite triangular elements
'T'k°°, k=2,...,8, are defined in a similar manner.

(l11.2) The elemental mappings from(s‘il‘) onto the quadrilateral elements 6fs: The
elemental mappings from the reference quadrilateral elemé%tonto the quadrilateral
elements of2s are the standard polynomial mappings.

(111.3) The elemental mappings froﬂﬂ) onto the quadrilateral elements with one curved
side in Fig. 7:Because of the specified mesh near the crack in Fig. 7, the meghhais
eight quadrilateral elements with one curved side. Then a blending type elemental map
from Q% onto the curved guadrilateral elemépt is constructed by using the method in
Chapter 6 of [23].

Now for the eight triangular elements with one curved side and 16 quadrilateral eleme
with two curved sides, we construct singular elemental mappings as follows=fdr £ 8,

WS = pkh o b Q) — T = oD (1) (A.15)
and for 9< k < 24,
We = pY o ¥ QY - Q=% Q0. (A.16)

Let us note

1. Unlike the standard polynomial type elemental mappings, the inverses of the eleme
mappingsWy, constructed through the exponential auxiliary mapping, are singular f
k <24



762 OH, KIM, AND LEE

2. The singular elemental mappings,, . . ., ¥, and the blending type elemental map-

pingsWys, . .., W3y, defined above are linearly changing&énalong the common circular
sides betwee®;7 and Q2s5, Q15 and Q26, and so on. Thus, the finite element space con
structed through these elemental mappings is “exactly conforming.”

Su
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